(V+5)^2=2v^2+15v+19

Simple and best practice solution for (V+5)^2=2v^2+15v+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (V+5)^2=2v^2+15v+19 equation:



(+5)^2=2V^2+15V+19
We move all terms to the left:
(+5)^2-(2V^2+15V+19)=0
We add all the numbers together, and all the variables
-(2V^2+15V+19)+5^2=0
We add all the numbers together, and all the variables
-(2V^2+15V+19)+25=0
We get rid of parentheses
-2V^2-15V-19+25=0
We add all the numbers together, and all the variables
-2V^2-15V+6=0
a = -2; b = -15; c = +6;
Δ = b2-4ac
Δ = -152-4·(-2)·6
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{273}}{2*-2}=\frac{15-\sqrt{273}}{-4} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{273}}{2*-2}=\frac{15+\sqrt{273}}{-4} $

See similar equations:

| 7=(-5/6y) | | -48=-5x-7x | | 8x-3(2x+2)=2(x-5) | | 5x+20+15x=180 | | 23x-12=15x-28 | | 15-2n=25 | | h(-5)=-5+2 | | 36-x+1=2x+11 | | -4x+5=-2-1 | | v-8+63=90 | | 40x-50=5x+5 | | 13x+12=x | | 0.2(100-n)+0.0n=0.1(100) | | d+3/2=3 | | 2-x+5x=46 | | 4x-4+8x-20=180 | | 6g-4=44 | | 18x=(-180) | | -7(m+4)=(m-2) | | 4+-2m=18 | | 2+-24+40n=-22+4n | | p−62=2 | | 2.5(2p+5)=5(p+2.5) | | –5p−–4p−8p+11p−–10p=–12 | | 1/12x+10=1/4x+54 | | -5-3(6x-8)=-5x+9 | | 8+(o8)=0 | | 8(5−x)=96 | | 8+2x+3-x=2x+1 | | a-2+8-5=a+1 | | 4x^2+28=16 | | -2(h-12)=-16 |

Equations solver categories